
Using Topic Information to Improve Non-Exact
Keyword-Based Search for Mobile Applications?

Eugénio Ribeiro1,2,3[0000−0001−7147−8675],
Ricardo Ribeiro1,3[0000−0002−2058−693X],

Fernando Batista1,3[0000−0002−1075−0177], and
João Oliveira3[0000−0003−4654−0881]

1 INESC-ID Lisboa, Portugal
2 Instituto Superior Técnico, Universidade de Lisboa, Portugal

3 Instituto Universitário de Lisboa (ISCTE-IUL), Portugal
eugenio.ribeiro@inesc-id.pt

Abstract. Considering the wide offer of mobile applications available
nowadays, effective search engines are imperative for an user to find
applications that provide a specific desired functionality. Retrieval ap-
proaches that leverage topic similarity between queries and applications
have shown promising results in previous studies. However, the search
engines used by most app stores are based on keyword-matching and
boosting. In this paper, we explore means to include topic information in
such approaches, in order to improve their ability to retrieve relevant ap-
plications for non-exact queries, without impairing their computational
performance. More specifically, we create topic models specialized on ap-
plication descriptions and explore how the most relevant terms for each
topic covered by an application can be used to complement the informa-
tion provided by its description. Our experiments show that, although
these topic keywords are not able to provide all the information of the
topic model, they provide a sufficiently informative summary of the top-
ics covered by the descriptions, leading to improved performance.

Keywords: Application search · Topic information · Non-exact queries.

1 Introduction

Nowadays, the offer of mobile applications with different functionality in app
stores is constantly increasing. Thus, although users spend most of their time
inside the applications, they also spend a significant amount of time searching
for and installing new applications. This reveals the need for effective search and
recommendation systems. However, most queries in app store search engines
contain just the name of the application that the user is looking for. This means
that users target specific applications, either because they were suggested to

? This work was supported by Portuguese national funds through Fundação para
a Ciência e a Tecnologia (FCT), with reference UIDB/50021/2020, and PT2020,
project number 39703 (AppRecommender).

2 E. Ribeiro et al.

them by acquaintances or they found them using other approaches, such as web
search. Word of mouth has always been an important form of marketing. Thus,
searching for applications suggested by acquaintances is normal. On the other
hand, searching for applications on the web is somewhat of a countersense, since
app stores have specialized search engines. However, those engines are typically
unable to semantically interpret the queries, considering their characteristics
and context. Thus, they lose to web search engines, which are able to process
more complex queries by crawling large amounts of data. Overall, data is the
defining factor, since queries in app store search engines are typically short and
the amount of data available to search on is reduced, especially in comparison to
the whole web. Thus, in order to deliver better search results, app store search
engines must overcome the data problem, either by semantically interpreting the
queries or by inferring additional information from the existing data to improve
the match ratio between the queries and relevant applications.

Topic information has been proved important in the context of information
retrieval [23], including in search for applications [14, 24], since it enables match-
ing when similar contexts are referred to using different words. However, while
the existing approaches to topic-based retrieval are based on similarity between
topic distributions, the highly distributed search approaches used in most app
stores are based on keyword-matching and boosting according to popularity
factors. In this paper, we explore means to include topic information in such
approaches, in order to improve their ability to retrieve relevant applications for
non-exact queries, without impairing their computational performance. More
specifically, we start by creating topic models specialized on application descrip-
tions. Then, we identify the most relevant and distinctive terms to represent each
topic. Finally, we explore how the relevant terms for each topic covered by an
application can be used to complement the information provided by the words
of its description in the context of non-exact keyword-based search.

In the remainder of the paper, we start by providing an overview on related
work on search for mobile applications, in Section 2. Then, in Section 3, we
present our approach for including topic information in keyword-based search.
Section 4 describes our experimental setup, including the dataset, evaluation
approach, and implementation details that allow future reproduction of our ex-
periments. The results of those experiments are presented and discussed in Sec-
tion 5. Finally, Section 6 summarizes the contributions of this paper and provides
pointers for future work.

2 Related Work

The algorithms behind the search engines of the two major mobile app stores,
Google Play [9] and Apple’s App Store [1], are constantly evolving and, since they
are proprietary, not all the details are disclosed. However, it is known that they
are mostly based on keyword-matching with multiple fields regarding the appli-
cations and boosting based on popularity factors or for business purposes. Most
alternative app stores are also proprietary and use similar search approaches.

Topic Information for Keyword-Based Application Search 3

Among these, many are based on the Lucene search engine [5] or one of the
highly distributed search engines built on top of it, such as Solr [19] or Elastic-
search [2], which focus on speed and availability.

For instance, Aptoide’s search engine [21] is based on Elasticsearch and per-
forms keyword-matching between the terms present in the query and fields con-
taining application information regarding its name, its package, and its descrip-
tion. Furthermore, in order to improve the match ratio, it includes alternatives
of the name, such as abbreviations, lemmatized words, and split and merged
versions of multi-word names. Matches with each of these fields contribute to
the relevance score with different weights. Furthermore, information regarding
the number of downloads of the application, its rating, the number of users that
rated the application, and whether it should be promoted for business purposes
is used to boost the score.

Mobilewalla [6, 7] uses an application search engine based on Lucene. The
keyword-matching fields include the application name, description, and its cat-
egories, while boosting fields include the rating and rank of the application, its
age and the frequency of releases, the number of users that commented and rated
the application, the number of applications in the same categories, and informa-
tion about the developer. The main difference from Aptoide’s approach is that
the computation of alternatives is not on the application side, but rather on the
query side. That is, the knowledge base does not include alternative application
names, but multiple versions of the query are generated by stemming and lem-
matizing its words. Furthermore, if using all the terms in the query does not lead
to the retrieval of enough results, alternative queries are generated by dropping
part of the terms. Alternatively, the query can be expanded by replacing terms
with corresponding synonyms or hyponyms.

To reduce the number of mismatches in keyword search caused by the use of
different terms by the users and developers, Tencent’s MyApp [24] extends the
queries performed in its search engine with topic and tag information. The set of
more than a thousand topics was obtained by applying Latent Dirichlet Alloca-
tion (LDA) [3] to the title and descriptions of a million applications. Using this
model, each application can then be represented as a topic distribution. Since
the queries are typically too short for performing an accurate inference of their
topic distribution, they are extended with information from the applications
which have been clicked on after similar queries. By computing the similarity
between the topic distribution of an extended query and those of the applica-
tions, the search engine is able to identify the most relevant applications for the
query in terms of topic. Tag information is used to add fine-grained semantics
to the query. The set of tags of an application is a filtered combination of hu-
man labels and tags obtained by crawling web and usage data regarding that
application. A query is extended with tags using a template-based method which
uses information from clicked applications to select the templates. Finally, the
LambdaMART algorithm [4] is applied to aggregate the applications obtained
through term, topic, and tag matching and order them for presentation to the
user. Although considering topic and tag information leads to a higher match ra-

4 E. Ribeiro et al.

tio, the query extensions and the computation of its topic distribution introduce
a high computational overhead during search.

Park et al. [14] explored the use of user reviews to improve the match ratio
by bridging the gap between the vocabulary used by users and developers. Fur-
thermore, in their study, they compared the performance of multiple retrieval
approaches – BM25(F) [18], Query Likelihood (QL) [16], and LDA-Based Doc-
ument Model (LBDM) [22]. The first is based on keyword-matching, the second
on language modeling, and the last on the combination of keyword- and topic-
matching. While relying solely on application descriptions, the highest perfor-
mance on a set of more than 50 non-exact queries was achieved using LBDM with
a topic model with 300 topics trained on the descriptions of 40,000 applications.
This confirms that topic information is able to complement the information ex-
plicitly present in descriptions by providing associations with words that refer
to similar topics. Furthermore, using the information provided by user reviews
significantly improved the performance of every retrieval approach. The best re-
sults were achieved using an approach that combines language modeling with
topic-based retrieval. Separate topic models are trained on descriptions and re-
views, but the review-level model is conditioned by the description-level one.
This allows the identification of review topics that do not match any description
topic and, thus, are not relevant for application retrieval. In a later study, Park
et al. [13] also relied on language and topic modeling to induce queries from
users’ social media text and recommend relevant applications.

3 Topic Information for Keyword-Based Search

When topic information is used for retrieval, documents are typically ranked ac-
cording to the similarity between their topic distribution and that of the query.
The approach we describe below enables the representation of topic informa-
tion as keywords that can be used by keyword-based retrieval approaches. These
keywords correspond to a set of terms that are sufficiently relevant and distinc-
tive to identify a topic and, thus, can function as its summary. In addition to
how the the keywords are generated from the topic models and included in the
retrieval approaches, we also describe preprocessing and topic model training
approaches that allow the generated models and the corresponding keywords to
focus on relevant aspects for mobile application search. Since our intent is to
show that topic information can be represented as keywords, we focus on ob-
taining that information from application descriptions. However, the approach
can be generalized to other textual information sources, such as user reviews.

3.1 Preprocessing

In the preprocessing phase, each description is split into sentences and depen-
dency parsed and its tokens are Part-of-Speech (POS) tagged and lemmatized.
By splitting into sentences, we are able to train both generic models based on
whole descriptions and more specific ones based on the sentences. POS tagging

Topic Information for Keyword-Based Application Search 5

allows filtering by the word classes that are more relevant for application search,
such as nouns, adjectives, and verbs. While the first reveal the concepts focused
by the description, the second reveal their characteristics. Furthermore, in this
context, non-auxiliary verbs typically reveal functionality. By combining the POS
tags and the dependency parse of each sentence, we can identify adjectives and
verbs that are negated. This is important to avoid grouping descriptions or sen-
tences that have opposite meanings. Finally, lemmatization simplifies matching
and leads to the generation of more constrained models.

Additionally, while terms that occur in a small set of descriptions or sentences
are unrelated to the most relevant topics covered by the whole collection, terms
that occur in a large portion of the collection are typically not discriminative.
Thus, we discard tokens that are commonly classified as stopwords, as well as
those which have a document frequency below a threshold dfmin or above a
threshold dfmax. The most appropriate values for these thresholds vary according
to the model. Those used in our experiments are detailed in Section 4.3.

Since the descriptions are lemmatized, we also lemmatize queries, in order to
enable matching. No additional preprocessing is performed on the queries.

3.2 Topic Models

We obtain our topic models using a classical LDA approach [3]. In an LDA model,
topics are seen as term distributions while documents are seen as mixtures of
topics. Thus, the definitions of term and document have a wide impact on the
aspects that are actually modeled. In typical applications of LDA, documents
are relatively large pieces of text, such as news articles or reports, and the terms
are the words in the documents, excluding stopwords. However, as referred in
the previous section, we can split the descriptions in different ways and filter
the tokens by specific word classes, in order to identify topics that are more
informative for application retrieval.

Regarding terms, after the preprocessing described in the previous section,
when training the topic models, we discard tokens that are not nouns, adjec-
tives, or non-auxiliary verbs. Furthermore, negated verbs and adjectives are dis-
tinguished from their positive counterparts.

In terms of documents, the most straightforward approach is to consider
each description a document. However, since the LDA model uses a Bag of
Words (BoW) approach, it is not aware of the dependency relations between
nouns and adjectives nor between verbs and their arguments. Thus, it assumes
that all the terms that occur in the document are related in the same manner.
This leads to the identification of more generic topics that may group terms that
are not directly related in the descriptions. On the other hand, each individual
sentence in a description typically contains terms that are directly related. Thus,
training a sentence-level model leads to the identification of more constrained
topics. Since both kinds of topic may provide relevant information for application
retrieval, we train both a description-level model and a sentence-level model.

Finally, similarly to any application of LDA, the number of topics, Nt, must
be defined a priori. The selection of an appropriate value for this parameter

6 E. Ribeiro et al.

reduces the probability of identifying topics that are either too generic to be
useful or so specific that capture irrelevant aspects. However, this categorization
depends on the intended use for the topics. Furthermore, the best value typically
depends on the dimensionality of the collection and the number of terms in the
vocabulary. Thus, the most appropriate number of topics is expected to differ
between the description- and sentence-level models.

3.3 Topic Keywords

Having trained the topic models, in order to use the information that they cap-
ture in the context of keyword-based retrieval approach, it must be transformed
into keywords. A straightforward approach is to represent each topic by the top
n terms in its distribution. However, using a fixed number of terms may lead
either to the inclusion of non-relevant terms or the discarding of terms that are
relevant for a topic. Thus, we use the approach described in Algorithm 1 to iden-
tify the set of relevant terms for each topic. The idea behind it is to approximate
the term distribution of a topic by a negative exponential function and select
the terms that appear before the inflection point as relevant. Thus, given a term
distribution, T , the algorithm starts by sorting it in decreasing weight order.
Then, only the n terms with highest weight in the distribution are considered,
as long as their weight is above a residual threshold, r. To account for noisy dis-
tributions, the weights of the terms are then smoothed using a weighted running
average that further approximates the distribution to a negative exponential one.
The remainder of the algorithm identifies the inflection point by analyzing the
weight differences between consecutive terms.

Algorithm 1 Relevant Terms

Input: T // The term weight distribution
Input: r // The residual weight threshold
Input: n // The maximum number of terms
Output: R // The relevant terms
1: T ← Sort({(t, w) ∈ T}, (ti, wi) < (tj , wj) := wi > wj)
2: W ← {wi : (ti, wi) ∈ T,wi > r, 0 < i ≤ n}
3: W ←WeightedRunningAverage(W)
4: d← false
5: for i = 1 : |W | do
6: m← (Wi −Wi−1)× |W |
7: if d and m > −1 then
8: break
9: else if m < −1 and not d then

10: d← true
11: end if
12: end for
13: R← T1:i

14: return R

Topic Information for Keyword-Based Application Search 7

3.4 Application Retrieval

The approach described in the previous section identifies the set of relevant
terms for a topic. To identify the set of description-level topic keywords for
an application, a, we use the corresponding topic model to compute the topic
mixture of its description. Then, we discard topics with weight below a residual
threshold, r. The keywords are then given by the aggregate of the relevant terms
for the remaining topics. The set of sentence-level topic keywords is computed
in a similar fashion. However, the topic mixture is computed for each sentence
in the application’s description and the keywords of the application are given by
the aggregate of the topic keywords of its sentences.

For retrieval purposes, each application is represented by a set of three tex-
tual fields for keyword matching, {ad, ast, adt}, corresponding to its textual de-
scription, the set of sentence-level topic keywords, and the set of document-level
topic keywords, respectively. In our experiments, we explore two keyword-based
retrieval approaches – BM25F [18] and Elasticsearch [2]. While the first is a
widely used information retrieval approach for semi-structured textual data, the
latter is a highly distributed search engine focused on speed and availability.
Given a query, q, both return a list of applications ordered by relevance score.
However, the scoring function differs. The adaptation of the two scoring func-
tions to our problem is presented below.

BM25F We use the same formulation of the base BM25F scoring function found
in several previous studies (e.g. [8, 15, 14]):

score(q, a) =
∑

t∈q∩a

(
idf(t)× (k3 + 1)c(t, q)

k3 + c(t, q)
× (k1 + 1)c′(t, a)

k1 + c′(t, a)

)
(1)

where idf(t) is the inverse document frequency of term t in the set of descriptions,
k1 and k3 are parameters that can be tuned according to the problem, c(t, q) is
t’s count in q and c′(t, a) is t’s normalized count in a, weighted by field:

c′(t, a) =
wd · c(t, ad)

1− b + b |ad|
n̄

+ wst · c(t, ast) + wdt · c(t, adt) (2)

where wd, wst, and wdt are the weights given to textual descriptions, sentence-
level topic information, and description-level topic information, respectively, and
b is a parameter that controls the strength of the normalization according to the
mean description length, n̄. We do not include normalization factors for topic
information, since the number of topic keywords is not relevant for the problem.

Elasticsearch Scoring in Elasticsearch is based on Lucene’s Practical Scoring
Function, which computes individual scores for each field, f , as

score(q, f) =
1√∑

t∈q idf(t)2
× |q ∩ f |
|q|

×
∑
t∈q

(
tf(t, f) · idf(t)2 · wf√

|f |

)
(3)

8 E. Ribeiro et al.

where the first factor is a cross-query normalization factor, the second factor
boosts according to the number of matching terms, tf(t, f) is the term frequency
of t in f , idf(t) is the inverse document frequency of t in the field f of all
applications, and wf is the weight of the field.

The relevance score of an application for a query is then given by

score(q, a) = (1− tb) ·max
f∈a

score(q, f) + tb ·
∑
f∈a

score(q, f) (4)

where tb is a parameter that controls the extent to which the non-top scoring
fields contribute for the overall relevance score of the application.

4 Experimental Setup

In this section, we describe our experimental setup, including the dataset, the
evaluation approach, and implementation details that enable the reproduction
of our experiments in future studies.

4.1 Dataset

In our experiments, we use the dataset crawled by Park et al. [14], which features
information regarding 43,041 mobile applications. Among other less relevant in-
formation, for each application, it includes the name, category, description, de-
veloper, date of publication, price, and number of downloads. Furthermore, it
includes review information in the form of the number of reviews, the average
rating, and textual data of up to 50 reviews per application, with a total of
1,385,607 reviews. Additionally, the dataset features 56 non-exact queries gener-
ated from forum posts that targeted an application with a specific functionality.
Each of these queries is paired with relevance information of the top 20 appli-
cations retrieved using multiple retrieval approaches. On average, there are 81
judged applications per query. Each query-application pair was annotated by
three users in a three-value scale: 0 for no satisfaction at all, 1 for partial satis-
faction, and 2 for perfect satisfaction. The relevance score is then given by the
average judgement of the annotators.

We decided to use this dataset since, to the best of our knowledge, it is the
only publicly available one featuring relevance scores of query-application pairs.
Furthermore, the results of previous studies on this dataset provide a baseline
for comparison of our results.

4.2 Evaluation Approach

In order to compare our results with those reported in previous studies on the
same dataset, we use the same evaluation metric as Park et al. [14], that is,
the Normalized Discounted Cumulative Gain (NDCG) [11] at 3, 5, 10, and 20
top retrieved applications. NDCG is a widely used metric in the context of

Topic Information for Keyword-Based Application Search 9

information retrieval to measure the effectiveness of search engine algorithms,
by assessing whether the results are ordered by relevance. In the context of
search for mobile applications, looking beyond the fifth result typically involves
scrolling and, thus, the NDCG at 3 and 5 are the most important to consider.

Given a graded relevance scale of applications in a result set for a given query,
to compute the corresponding NDCG, we start by computing the Discounted
Cumulative Gain (DCG) of the result set:

DCGk =

k∑
i=1

reli
log2(i + 1)

(5)

where reli is the relevance of the i-th application in the result list for query
q. This metric measures the gain of an application based on its position in the
result list. The gain is then accumulated from the top of the list, with the gain of
each result being discounted as the distance from the top increases. The NDCG
is then obtained through normalization using the Ideal Discounted Cumulative
Gain (IDCG), that is, the DCG of a perfectly sorted result list:

NDCGk =
DCGk

IDCGk
(6)

As baselines, we use the results achieved using both BM25F [18] and Elas-
ticsearch [2] when relying solely on matching with description texts, without
topic information. That is, wd = 1, wst = 0, wdt = 0 in Equations 2 and 3. This
transforms BM25F into its single-field version, BM25. Additionally, we compare
our results with the LBDM [22] and Google Play [9] results reported by Park et
al. [14]. Since LBDM is able to take advantage of all the information captured
by the topic model, its results provide an upper bound for performance when
pairing topic information with keyword-matching with application descriptions.
On the other hand, Google Play results serve as an indicator of the performance
of current app store search engines, which rely on additional fields for matching
and on popularity information for boosting.

4.3 Implementation Details

The application descriptions provided in the dataset contain HTML tags and
escape characters. We used the html2text package [20] to convert them to plain
text. Then, we used the spaCy parser [10] for sentence splitting, dependency
parsing, POS tagging, and lemmatization. Since the set of English stopwords
used by spaCy is too aggressive, we relied on the set defined in NLTK [12]
while filtering the tokens. Additionally, for consistency with the experiments by
Park et al. [14], we defined dfmin = 5 and dfmax = 0.3 for keyword-matching
with the description. That is, we discarded tokens that appeared in less than 5
descriptions or in more than 30%.

To train the topic models, we used the parallelized LDA implementation
provided by the gensim library [17]. Additionally, we performed a more aggressive
low-frequency token filtering. While training the sentence-level topic model, we

10 E. Ribeiro et al.

used dfmin = 10, since, in this case, we considered the sentence frequency and
lower values still included many terms that only occurred in a single description.
While training the description-level topic model, we used dfmin = 0.01, that is,
we discarded tokens that appeared in less than 1% of the descriptions, in order
to identify more generic topics. In terms of the number of topics, we defined
Nt = 300 for the description-level model, for consistency with the experiments
by Park et al. [14], and Nt = 100 for the sentence-level model, since for higher
values there were topics that were not attributed to any application. While
identifying the relevant terms for each topic, we defined a maximum number of
terms n = 20 and a residual weight threshold r = 0.01. The same residual weight
threshold was used to attribute topics to applications.

For keyword-matching with the description in BM25(F), we used the same
parameters as Park et al. [14]. That is, k1 = 4, k3 = 1000, and b = 0.4. The
remaining parameters – wd , wst, and wdt for both BM25F and Elasticsearch,
and tb for Elasticsearch – were tuned using grid search to maximize the mean
of the four NDCG results, that is,

¯NDCG =

∑
k∈K NDCGk

|K|
,K = {3, 5, 10, 20} (7)

For that reason, the concrete values and their meaning are discussed in Section 5.

5 Results

Table 1 shows the NDCG results of our experiments, as well as the reference
results achieved using LBDM and Google Play. In the context of search for
mobile applications, the NDCG results lose relevance as the number of considered
applications increases, since only a reduced set can be shown on screen at each
time. Thus, we will focus this discussion on NDCG@3 results. However, since the
parameters were tuned to maximize the mean results at the multiple values of
k, we will also make some remarks regarding the results achieved when a higher
number of applications is considered.

First of all, it is important to note that the baseline BM25 results are one
percentage point lower than those reported by Park et al. [14] for k ∈ {3, 5}, in
spite of using the same values for all the parameters. This is due to differences in
preprocessing, especially regarding the filtering of tokens, which also considered
frequency in reviews. This means that the results achieved using LBDM are also
expected to be lower if using our preprocessing approach.

Overall, due to its focus on temporal performance, Elasticsearch performs
worse than BM25(F). When considering textual descriptions, the decrease in
performance is between two and three percentage points. However, when consid-
ering topic information only, the decrease is around 20 percentage points. This
is due to the reduced vocabulary and the normalization factors applied by the
Elasticsearch score function. On the other hand, since we consider the whole
vocabulary and do not include normalization factors for topic information while
computing the BM25F scores, its results are not penalized.

Topic Information for Keyword-Based Application Search 11

Table 1. NDCG results of BM25(F) and Elasticsearch applied to textual descriptions
(D), topic information (T) and their combination (D + T). The last block provides
reference results reported by Park et al. [14].

Approach NDCG@3 NDCG@5 NDCG@10 NDCG@20

BM25 (D) 0.569 0.540 0.523 0.537
Elasticsearch (D) 0.540 0.523 0.502 0.512

BM25F (T) 0.554 0.553 0.535 0.530
Elasticsearch (T) 0.341 0.342 0.356 0.370

BM25F (D + T) 0.574 0.542 0.527 0.544
Elasticsearch (D + T) 0.552 0.532 0.504 0.519

LBDM 0.584 0.563 0.543 0.565
Google Play 0.589 0.575 0.568 0.566

Comparing the results achieved using textual descriptions with those achieved
using topic information, we can see that the performance of BM25(F) decreases
1.5 percentage points in terms of NDCG@3, but actually increases in terms of
NDCG@5 and NDCG@10. This means that the set of topic keywords is an appro-
priate summary of the information provided by the description. However, these
results were achieved when relying solely on the sentence-level topic keywords,
that is, wst = 1 and wdt = 0. Including description-level topic keywords does not
lead to improvement. On the other hand, the results using Elasticsearch were
achieved using wst = 2wdt and tb = 0.1, which means that the sentence-level
topic keywords are still the most informative, but that the document-level topic
keywords can provide complementary information.

As expected, the best results are achieved when combining the information
provided by textual descriptions and topic information. However, in the case of
BM25F, there is only improvement when topic information is given a reduced
weight. More specifically, the results reported in Table 1 were achieved with
wd = 0.96, wst = 0, and wdt = 0.04. Several other configurations, including ones
that also give weight to sentence-level topic information, lead to similar results.
Still, the weights are always severely biased towards the textual descriptions.
For instance, the parameters that maximized NDCG@3 in our experiments were
wd = 0.98, wst = 0.01, and wdt = 0.01. This means that the topic keywords
are only used as complementary information that enable the retrieval of more
relevant applications in specific cases. On the other hand, in the case of Elas-
ticsearch, the mean NDCG was maximized with wst = 2wdt, wd = wdt, and
tb = 0.5. This means that the relation between the weights of sentence- and
description-level topic information is kept in relation to when the textual de-
scriptions are not considered. Furthermore, although higher weight is given to
topic information, the value of the tie breaker parameter shows that all fields
have an important contribution to the score.

12 E. Ribeiro et al.

Overall, including topic information improves the performance of Elastic-
search by one percentage point in terms of both NDCG@3 and NDCG@5. How-
ever, by comparing the BM25F results with those of LBDM, even assuming
that the performance of LBDM is expected to decrease with our preprocessing
approach, we can see that the topic keywords are not able to capture all the infor-
mation provided by the topic models. This happens because the representation of
the topics in the form of their most relevant terms does not allow matching with
similar keywords that are not as common. Finally, the performance of Google
Play shows that additional fields, such as the application titles, and popularity
information are relevant for delivering the best results for non-exact queries.

6 Conclusions

In this paper, we have explored how topic information can be represented in the
form of keywords to be considered by mobile application retrieval approaches
based on keyword-matching. This is important, since app store search engines
have strict requirements in terms of temporal performance and availability,
which, currently, are only fulfilled by highly distributed retrieval approaches
based on multi-field keyword-matching and boosting.

We focused on application descriptions and trained two LDA models, one
on whole descriptions and another on their sentences. While the first generates
more generic topics, the second captures more fine-grained subjects. Then, we
computed the topic mixtures of the application descriptions and represented
the topic information of an application as the aggregate of the relevant terms
for each topic in its mixture. The set of relevant terms for a topic is identified
by approximating its term distribution by a negative exponential function and
selecting the terms which appear before the inflection point.

The results of our experiments have shown that both sentence- and description-
level topic information provides cues for application retrieval from non-exact
queries, leading to improved performance. Furthermore, the topic keywords make
a sufficiently informative summary of the information provided by the descrip-
tions. However, they do not allow matching with similar keywords that are not
as common. Thus, the performance is still lower than when performing retrieval
based on topic similarity, which relies on all the information provided by the
topic models. Thus, as future work, it would be interesting to assess whether in-
cluding synonyms of the relevant terms that occur in the same context can enable
matching with those less common keywords without introducing ambiguity.

Furthermore, it is important to assess whether the performance improvement
observed by Park et al. [14] when leveraging review data can also be observed
when the information captured by the topic models that merge description and
review information is provided in the form of keywords.

Finally, it is important to assess how this approach behaves in combination
with boosting factors based on popularity.

Topic Information for Keyword-Based Application Search 13

References

1. Apple: App Store. https://www.apple.com/ios/app-store/ (2008)

2. Banon, S.: Elasticsearch. https://www.elastic.co/ (2010)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3, 993–1022 (2003). https://doi.org/10.5555/944919.944937

4. Burges, C.J.C.: From RankNet to LambdaRank to LambdaMART: An Overview.
Learning 11(23–581), 81 (2010)

5. Cutting, D.: Apache Lucene. https://lucene.apache.org/ (1999)

6. Datta, A., Dutta, K., Kajanan, S., Pervin, N.: Mobilewalla: A Mobile Application
Search Engine. In: MobiCASE. pp. 172–187 (2011). https://doi.org/10.1007/978-
3-642-32320-1 12

7. Datta, A., Kajanan, S., Pervin, N.: A Mobile App Search Engine. Mobile Networks
and Applications 18(1), 42–59 (2013). https://doi.org/10.1007/s11036-012-0413-z

8. Fang, H., Tao, T., Zhai, C.: A Formal Study of Information Retrieval Heuristics.
In: SIGIR. pp. 49–56 (2004). https://doi.org/10.1145/1008992.1009004

9. Google: Google Play. https://play.google.com/ (2008)

10. Honnibal, M., Montani, I.: spaCy 2: Natural Language Understanding with
Bloom Embeddings, Convolutional Neural Networks and Incremental Parsing.
https://spacy.io/ (2017)

11. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Tech-
niques. ACM Transactions on Information Systems 20(4), 422–446 (2002).
https://doi.org/10.1145/582415.582418

12. Loper, E., Bird, S.: NLTK: The Natural Language Toolkit. In: ACL Work-
shop on Effective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics. vol. 1, pp. 63–70 (2002).
https://doi.org/10.3115/1118108.1118117

13. Park, D.H., Fang, Y., Liu, M., Zhai, C.: Mobile App Retrieval for Social Media
Users via Inference of Implicit Intent in Social Media Text. In: CIKM. pp. 959–968
(2016). https://doi.org/10.1145/2983323.2983843

14. Park, D.H., Liu, M., Zhai, C., Wang, H.: Leveraging User Reviews to Im-
prove Accuracy for Mobile App Retrieval. In: SIGIR. pp. 533–542 (2015).
https://doi.org/10.1145/2766462.2767759

15. Pérez-Iglesias, J., Pérez-Agüera, J.R., Fresno, V., Feinstein, Y.Z.: Integrating the
Probabilistic Models BM25/BM25F into Lucene. Computing Research Repository
arXiv:0911.5046 (2009)

16. Ponte, J.M., Croft, W.B.: A Language Modeling Approach to Information Re-
trieval. In: SIGIR. pp. 275–281 (1998). https://doi.org/10.1145/290941.291008

17. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: LREC Workshop on New Challenges for NLP Frameworks. pp. 45–50
(2010). https://doi.org/10.13140/2.1.2393.1847

18. Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and
Beyond. Foundations and Trends R© in Information Retrieval 3(4), 333–389 (2009).
https://doi.org/10.1561/1500000019

19. Seeley, Y.: Apache Solr. https://lucene.apache.org/solr/ (2004)

20. Swartz, A.: html2text. https://github.com/Alir3z4/html2text/ (2003)

21. Trezentos, P.: Aptoide. https://www.aptoide.com/ (2009)

22. Wei, X., Croft, W.B.: LDA-Based Document Models for Ad-Hoc Retrieval. In:
SIGIR. pp. 178–185 (2006). https://doi.org/10.1145/1148170.1148204

14 E. Ribeiro et al.

23. Yi, X., Allan, J.: A Comparative Study of Utilizing Topic Models for Information
Retrieval. In: ECIR. pp. 29–41 (2009). https://doi.org/10.1007/978-3-642-00958-
7 6

24. Zhuo, J., Huang, Z., Liu, Y., Kang, Z., Cao, X., Li, M., Jin, L.:
Semantic Matching in APP Search. In: WSDM. pp. 209–210 (2015).
https://doi.org/10.1145/2684822.2697046

