Our paper “From Implicit Preferences to Ratings: Video Games Recommendation based on Collaborative Filtering” was distinguished with the Best Poster Award in KDIR 2021, the 13th International Joint Conference on Knowledge Discovery and Information Retrieval.
Abstract: This work studies and compares the performance of collaborative filtering algorithms, with the intent of proposing a videogame-oriented recommendation system. This system uses information from the video game platform Steam, which contains information about the game usage, corresponding to the implicit feedback that was later transformed into explicit feedback. These algorithms were implemented using the Surprise library, that allows to create and evaluate recommender systems that deal with explicit data. The algorithms are evaluated and compared with each other using metrics such as RSME, MAE, Precision@k, Recall@k and F1@k. We have concluded that computationally low demanding approaches can still obtain suitable results.